Главная » Статьи » Мои статьи |
Поурочные разработки уроков по математике, открытые уроки по алгебре
Тема: «Показательная функция. Показательные уравнения» (алгебра 11 класс) Актуализация знаний. Записи на доске: у = f (х) у = f (х - m) у = f (х) + n у = - f (х) у = f (кх) у = кf (х) у = f (|х|) у = |f (х)| |у| = f (х) - Вспомните виды преобразований графиков функций. (Учащиеся комментируют каждый случай.) Эти преобразования вы должны были применить дома при построении графиков показательных функций. Проверим, что у вас получилось. (Демонстрация работ учащихся, Оценивание.) Усвоение новых знаний. На дополнительной доске записаны уравнения:2(x - 1) = 4x х2 = 25 5х2 - 3х - 2 = 0 х4 =16 2х5 = 64 3x + 2 = 27 9x - 4 ·3x - 45 = 0 3x + 1 - 2 · 3x - 2 = 25 3x = 5x (1/3)x = х + 1 - Какие из данных уравнений вам знакомы, а какие нет? - Да, действительно, уравнения второго столбика отнесла бы в одну группу – группу показательных уравнений, с которыми мы сегодня и должны познакомиться. - Запишем в тетрадях тему урока «Показательные уравнения». Материал очень объёмный. Я познакомлю вас с разными видами показательных уравнений и алгоритмами их решений на более простых примерах. На последующих уроках мы закрепим решения на более сложных случаях. Определение. Уравнение вида аx =в , где а>0, а? 1, называется показательным уравнением. - Я бы выделила 5 основных видов показательных уравнений, встречаемых в школьном курсе. 1) Уравнения, приводимые к одному и тому же основанию. 3x + 2 = 27 3x + 2 = 33 т.к. а = 3, а != 1, то х + 2 = 3 х = 1 2) Уравнения, приводимые к квадратным уравнениям. 9x - 4 · 3x – 45 = 0 т.к. 9x = (32)x = 32x = (3x)2, выполним замену 3x = t, где t > 0 t2 – 4t – 45 = 0 t1; = 9 , t2 = -5 (не удовл. пост. условию) 3x = 9 х = 2 3) Уравнения, решаемые вынесением общего множителя за скобки. 3x + 1 - 2 · 3x - 2 = 25 3x · 3 - 2 · 3x · 3-2 = 25 3x ( 3 – 2/9 ) = 25 3x · 25/9 = 25 3x = 9 х = 2 4) Уравнения, решаемые с помощью деления обеих частей на одно и то же выражение. 3x = 5x | : 5x, т.к. 5x != 0 3x / 5x = 1 ( 3/5 )x = 1 ( 3/5 )x = ( 3/5 )0 х = 0 5) Уравнения, решаемые графически. ( 1/3 )x = х+1 - Рассмотрим функции у = ( 1/3 )x и у = х + 1. Первая убывающая, а вторая возрастающая. Значит, графики этих функций могут пересечься не более чем в одной точке. Поэтому данное уравнение имеет не более одного корня, который можно подобрать подбором. х = 0 На дом: п. 36, просмотреть все решённые показательные уравнения, определить к какому виду они принадлежат, № 46. | |
Просмотров: 568 | Рейтинг: 5.0/1 |
Всего комментариев: 0 | |